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Abstract

The growing area of Data Mining defines a gen-
eral framework for the induction of models from
databases. Bayesian Networks are a class of graph-
ical models which are able to deal with uncertainty.
Nowadays, they are among the most promising
ones. This paper summarizes our work on recov-
ering Bayesian Networks in the framework of Data
Mining, by commenting and discussing the insight
gained in developing a Bayesian Network induction
module in an existing Data Mining tool, Data Sur-
veyor.

1 Introduction

The way we represent knowledge in a certain do-
main, is of fundamental importance in the abil-
ity of dealing automatically with that knowledge
in any knowledge based system. Graphical models
have become a very promising way of representing
domain knowledge, and efforts, around this mod-
els, have been carried out during the last ten years
[25, 18].

Every type of model uses a different way of un-
derstanding data, and many applications have been
developed to induce these models, and shown their
merits. But the management of these models from
a common point of view, is an improvement of their
benefits. Quite often we are completely uninformed
about our data, and we need to induce different
types of models to get a clear picture of the biases
contained in it. This situation lead us to the idea
that we need to induce and compare easily differ-
ent class of models, by using a common inductive
query language. Bayesian Networks have already
been applied in some fields of science [11], but we
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think that they only can show their full abilities,
within this common point of view, Data Mining.

This paper summarizes the work carried out in
[6], in the following way. First we will define briefly,
a Bayesian Network. Then, we will describe the
architecture of a Data Mining tool where we have
developed our ideas. We will outline how do we fit
Bayesian Networks within this architecture, and we
will show some small, but interesting, applications
of inducing these models using this new developed
part. Finally, we will point out some conclusions
and further lines of work.

2 Bayesian Networks

A Bayesian Network is a probabilistic model of a
certain domain described as a set of variables and
their relationships. More precisely, networks are
models that give us a simple interpretation for some
part of a concrete domain, and they combine well
with the bayesian interpretation of probability.

In Bayesian Networks, the graphical representa-
tion is given by Direct Acyclic Graphs (DAGs),
where a node is a variable, and each edge states
a relationship of conditional dependence between
two nodes. In other words, the lack of an edge,
states a relationship of (conditional) independence.

A given domain U = {zi,...,z,} may be de-
scribed in terms of a joint probability distribution
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P(z1,...,2,) =

and the set of assertions of (conditional) indepen-
dence, given by the Bayesian Network, reduces the
previous expression P(z;|%1,...,2;—1) to P(z;|m;)
for some subset of variables m; C U. This set =;



is the parent set of the variable z; in the DAG. In
general, this parent set 7; will be a proper subset
of {z1,...,z,}. Formally, a Bayesian Network B
is the pair

B = (Bs,Bp)

where Bg is the network structure and Bp is the
set of parameters or (conditional) probability dis-
tributions associated to every variable.

This last definition introduces two of the tasks we
may perform in learning Bayesian Networks. One
is to recover the structure Bg, and the other is to
recover the (conditional) probability distributions
Bp. The most interesting task, is to recover the
structure Bg, because this amounts to the induc-
tion of a dependency/graphical model.

Moreover, the task of recovering a Bayesian Net-
work structure is the most complex one, due to the
number of possible DAGs to be recovered, which
grows exponentially, in the number of nodes.

2.1 Recovering the structure

We identify two main approaches for recovering the
structure of a Bayesian Network. One makes as-
sumptions on the topology underlying the dataset.
These assumptions yield algorithms of polinomic
complexity. The second approach does not put any
constraint on the structure to be recovered. It uses
search trategies, which make feasible to explore the
vast search space. We may find proposals in the
first approach in [12, 5, 8, 19, 20].

These two approaches share the goal of trying to
recover a dependency model, but while the graph-
ical assumptions of the first one, restrict the possi-
bility of recover the true structure in most of cases,
the second one always works towards the achieve-
ment of the true structure.

The main merit of the first approach is that over-
comes the complexity of the problem. And some
authors [21] assert that performing inference over
this more simple structure, the values obtained, are
similar to those we would get inferring over the true
structure.

Anyway, we are more interested in trying to re-
cover the structure closest to the true one.In this
second approach, every algorithm sets up a crite-
rion of goodness of a Bayesian Network. This cri-
terion is commonly called, a quality measure. This

measure guides the search process, which is sched-
uled by some search strategy.

These algorithms are usually divided according
to the type of quality measure they use. We point
out three approaches: bayesian measure based al-
gorithms [10, 3], information criterion based algo-
rithms [9, 2], and minimum description length prin-
ciple based algorithms [15]. A comparison between
these algorithms is beyond the scope of this paper,
but the reader may consult [2, 22, 21] for a discus-
sion of their properties.

Our point is that any of these model induction
algorithms can be cast in terms of search strategy.
This, in turn, can be further split into three compo-
nents: heuristic function that evaluates a tentative
solution (partial model) by using a goodness mea-
sure; a set of operators for creating new solutions;
and a search strategy (hill-climbing, beam-search,
etc). By combining this aspects (evaluation func-
tion, search operators, and search regime) a wide
variety of algorithms can be described.

3 A Data Mining tool: Data
Surveyor

The previous formalization of model induction al-
gorithms is the base of the architecture of the Data
Mining tool Data Surveyor. This tool is currently
developed as part of the ESPRIT-IV project KESO
(Knowledge Extraction for Statistical Offices; 1996-
1999). It has been our target architecture, where
we have developed a new module, which makes the
tool able to recover Bayesian Network structures.
Data Surveyor is structured in three layers: the
user interface (the frontend), the discovery layer
(the mining server) and the data warehouse (the
backend). These layers can work on separate ma-
chines connected through a TCP/IP network. The
data warehouse may be built and maintained by
some of the existing commercial platforms in the
market, but by default Data Surveyor incorporates
the Monet Database Management System. Monet
[1] is an extensible parallel database kernel that
has been developed at the University of Amsterdam
and CWI since 1993. Its design is based on trends
in hardware technology: main memories of hun-
dreds of megabytes are now affordable, and custom
CPUs can perform over 200 MIPS. Monet has al-



ready achieved considerable successes in Data Min-
ing [16].

We may see a sketch of the architecture of Data
Surveyor in figure 1.

eb

java applets

Xpce

projects
questions

vrml worlds

answers .
plug-ins

visuals

CLIENTS

odmg / C,C++,Java

mining cache: gdk

mining cache: java

openDM

Server

persistent
customizable
high performance
compact

scalable

Monet Interpreter Data
Mine
Kernel

SERVER

Jatabase Drilling Engine

openDW
[ operowsh ]

Figure 1: Architecture of Data Surveyor
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The mining server supports access from several
clients at the same time. The interaction between
layers is possible through two different protocols
(openDM for client-server, and openDW for server-
data warehouse). Two of the main merits of this ar-
chitecture are: the ability to mine large databases,
by using a combination of hardware/DBMS pre-
pared to deal with them, and the persistent stor-
age of the search space, by using the DBMS for this
purpose as well.

By persistent storage of the search space, we
mean to store the tentative solutions (we call them
below hypotheses) that are being generated to ex-
plore the search space. In other words, the persis-
tent storage of the search space refers to the per-
sistent storage of the explored search space. Even
being smaller than the whole search space, this ez-
plored search space might be really huge, but every
day the magnetic memories become bigger, faster
and cheaper. And this makes possible to store and
access efficiently any point of the explored search
space.

The ability of storing the search space is very im-
portant if we want to mine large databases.In that
case, the mining processes may take long time, and

the user might desire to stop the process momentar-
ily. Then this user may assess the current state of
the search, and eventually decide to continue this
search from some other point changing some pa-
rameters.

The most important parts to be developed in or-
der to let Data Surveyor construct Bayesian Net-
works models are contained in the Mining Server.
In figure 2 we may see the internal structure of the
Mining Server.

The models to be induced, are described within
this architecture through a description language,
which is implemented using the ODMG standard.
A concrete description language binds a set of op-
erators and a set of quality measures. The main
elements of the Mining Server are:

e The Search Manager, which contains sev-
eral search modules that implement different
search strategies. Within the architecture of
Data Surveyor, it is established the naming
convention in which we will identify hypoth-
ests with model, more concretely, in our case
a DAG. Every search module uses a certain
operator to go through the search space.

e The Description Generator, implements the
operators. Some of them create initial hy-
potheses, and the rest derive new hypotheses
by manipulation of already explored hypothe-
ses.

e The Quality Computer, implements a wide va-
riety of goodness measures. Each one is as-
sociated to a concrete description language,
and computes the qualities of hypotheses us-
ing aggregated information from the backend
database.

e The Mining Conductor, which manages and
schedules mining tasks, and implements rou-
tines to create new mining projects, search
spaces, search tasks, etc.

e The Search Space Manager, is the storage man-
ager of the Mining Server for the search space.
It can maintain different hypotheses spaces for
several tasks at the same time.

Below we may see the algorithmics of a mining
task. The condition of existence of an open path,
refers to the possibility of following one or more
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Figure 2: Flow of the hypotheses within the Mining
Server

branches in the search, that improve the quality of
the current best hypothesis, according to the cur-
rent search strategy. When the Quality Computer
ends the qualification task, the Search Manager can
continue its job, because new qualified hypotheses
have arrived to the search space.

procedure mining task is
While 3 open_path do

Search Manager selects a set of hypotheses
from the search space to be improved, accord-
ing to the search strategy selected. For each
hypothesis, picks a hypothesis generating op-
erator, which will create a new set of candi-
dates to explore.

Description Generator executes the chosen
operator on the given set of hypotheses and
generates new hypotheses.

Quality Computer takes newly generated
hypotheses and computes their qualities us-
ing the drilling engine to interact with the
database server.

endwhile

endprocedure

Other important aspect, is the concept of neigh-
bourhood, which is introduced by the Description

Generator. This component, works on a set of par-
ent hypotheses, and use them to produce another
set of neighbour hypotheses. In other words, those
models that are similar, and might lead to a better
one.

4 Updating Data Surveyor

Mainly, the two components that should be up-
dated for recovering Bayesian Networks are the De-
scription Generator, and the Quality Computer.
Within the Description Generator we have devel-
oped an INIT operator, which creates an initial
hypothesis, which may be either an empty DAG
(a DAG with no arcs), or an arbitrary DAG con-
tained in the search space and picked up by the
user. Any new mining task starts from this initial
hypothesis. Moreover, a NEIGHBOUR operator
has had to be developed. This NEIGHBOUR oper-
ator, creates a neighbourhood from a given hypoth-
esis. This neighbourhood is formed by all possible
DAGs with one arc more, one arc less, and one arc
reversed, and it is stored in the search space. To
keep the new generated graphs acyclic, the oper-
ator tests whether the addition or reversion of an
arc can introduce a cycle.

The shape of this neighbourhood makes possible
to take any direction in the search space. This is
an important feature, because it helps to the search
strategies to escape many local maxima. On the
other hand, the generation of this neighbourhood is
actually the bottleneck of the system. Which does
not mean that the system cannot work properly,
but we have assessed that to double the amount
of tuples of a dataset does not mean to double the
recovering time. For databases with large schemas
the recovering time, mainly stems from the appli-
cation of the NEIGHBOUR operator.

Concerning the Quality Computer, we have im-
plemented the Bayesian Measure of Cooper and
Herskovits [10], which basically works by comput-
ing count aggregates on data cubes [23]. Every data
cube is formed by a parent set of a given variable
plus this variable.

These count aggregates refer to a given variable
v; and its parent set 7;, in the following form:

e N;jr, number of cases where v; takes the do-
main value z;; and 7; takes the configuration
of values x,;



o N;j = > 1o, Niji, where r; is the number of
possible values that v; can take

The quality for a given variable is computed upon
a formula which works using these count aggre-
gates, and the quality of a whole DAG is computed
by adding up to the results of every variable. So,
the Bayesian Measure (and most types of measures)
works as a local quality for every variable.

To take profit of this feature the Quality Com-
puter splits up every DAG in subDAGs. Each sub-
DAG has a unique sink, and it is stored as a new
hypothesis. The mechanism of creating and storing
hypothesis in the search space, checks out automat-
ically whether a hypothesis already exists, to avoid
to duplicate hypotheses and therefore, to introduce
loops in the search process.

Further, every hypothesis has associated a qual-
ity which is stored with it. Thus, the fact of storing
subDAGs makes cheaper the re-calculation of the
quality of any complete DAG.

5 Experiments

In the experimentation, we have been using a search
module that implements a beam search with three
parameters: the maximum number of best results
to be retrieved by the user, the width of the beam,
and the maximum number of calls to the neighbour
operator (called depth). These calls to the neigh-
bour operator are performed until this maximum
number is reached or the branch is rejected. By
setting the first two parameters to one, and the
third with no limit, we are, in fact, scheduling a
Hill-Climber. By setting no limits in any of them
we are scheduling an exhaustive search.

We have checked out that the ability of tunning
the search by using these three parameters and the
shape of the neighbourhood we have implemented,
allow the search to escape from many local maxima.

5.1 Hidden variables

The following experiments have been developed to-
wards the assessment of the existing theories of dis-
covering hidden influences in data [13, 25], which
might explain some strange patterns reflected in
our data.

The experiments also, make use of some proper-
ties of conditional independence to detect the pres-
ence of a hidden variable. Thus, has been proved
useful in classification domains.

We generate a dataset with three variables, with
the aim of reflecting the following three clusters of
tuples:

a az as
true true xxx
xxx false true
false false false

Where the value xxx represents either true or
false. This dataset is generated upon the Bayesian
Network of the figure 3, which sets up all three vari-
ables mutually dependent. The bayesian measure
implemented in Data Surveyor recovers perfectly,
from the dataset, the structure we put beforehand.

)

Figure 3: Bayesian Network for the clustering ex-
ample

Then we started a clustering process using the
the program Autoclass [7], which finds, indeed, the
three previous clusters. Autoclass generates a re-
port with the most probable class assigned to ev-
ery case. We extract this information as a column
which we paste to the original dataset. Let’s call
this new column of the dataset, C' (the class col-
umn).

Starting again the mining process, but using
these four attributes, Data Surveyor recovers a
structure where the class variable renders the other
three attributes conditionally independent. In
other words, we may see that renders a common
influence in a1, a2, as.

Further, this Bayesian Network structure is suit-
able to perform Bayesian Classification [17, 4]. To
get a better picture of this result, we have calcu-
lated the Kullback-Leibler cross entropy [14] of the
network of figure 4, which is a measure of closeness
between the original distribution and the aproxi-
mated distribution given by the Bayesian Network.

In this figure it is written the value of this
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Figure 4: Bayesian Network with a hidden com-
mon influence, as a class variable. The value corre-
sponds to the Kullback-Leibler cross entropy

Kullback-Leibler cross entropy and we may see that
is close to the zero value. If we calculate this en-
tropy related to the simplest aproximation given by
assuming ap,as, a3 independent (a Bayesian Net-
work with no arcs), we will obtain 0.27238, which is
almost ten times greater than introducing this class
variable. Thus, we can assert that for some datasets
we can aproximate better its probability distribu-
tion by introducing some new variable which ren-
ders a common influence on some subset of the vari-
ables. And this turns in better accuracy when we
will perform inference.

Instead of inferring the class column through a
clustering process, let’s create a dataset with this
class column and the other a4, as, az with the topol-
ogy shown in figure 4. Again, Autoclass finds three
clusters of tuples, but if we start the mining process
using only a1,a2,as as sources, we will obtain the
results of figure 5.

PRWAT WAL

18572.8 18572.6 18572.9 18573

Figure 5: Recovered Bayesian Networks in the clus-
tering example, with the corresponding values of
the Bayesian Measure

In this figure the numbers below the DAGs cor-
respond to the values of the Bayesian Measure, i.e.
the quality. This quality can only be compared be-
tween networks recovered from the same dataset. It
is in its logarithmic form without the minus sign.
The smaller quality, the better network.

Therefore, it has been shown that, when recov-
ering a dependency model which yields every vari-
able mutually dependent, we may think that there
exists a hidden influence which renders them con-
ditionally independent [13], which, in some cases,

could be used as a class variable.

We might find the situation in which a clustering
process over a database with a large schema, does
not produce meaningful results, because of the in-
tervention of some noisy variables. If we recover
a dependency model and we perform this cluster-
ing process over those set of variables that appear
mutually dependent, probably we will find more
meaningful clusters in the dataset formed by that
attributes.

Another interesting result concerns the ability of
the Bayesian Measure to recover I-Maps [25, 18]
(which may be minimal for large databases). With
this property, we can trust faithfully every recov-
ered assertion of (conditional) independence. We
do know that any formalization of conditional in-
dependence is closed under Semi-Graphoid axioms
[18, 24]. So, it is possible to extract new, and true,
assertions of conditional independence, by applying
this axioms on the recovered dependency model.
This new assertions may notice us of the lack of ex-
pressiveness of a current DAG, which in turn might
lead to the discovery of a hidden influence.

5.2 Noise

An important problem we often find with real-
world data, is the noise. There is several types
of noise but we will only refer to that produced by
those tuples that, for some reason, do not reflect
what it has been measured. Thus, we are inter-
ested in knowing how does the Bayesian Measure
behaves in front of this noise. To simulate and ex-
periment this, we will introduce gaussian noise us-
ing a normal distribution, which power is ruled by
the variance of this normal distribution. There is
many ways of introducing this noise, and the way
we have used is to disturb the selection of the cor-
responding tuple in the probability distribution of
the dataset. In order to shift the selection of this
tuple one or more entries, when the noise appears.

NN\ N\
QRN

Figure 6: Bayesian Networks recovered from
datasets with different levels of noise



In figure 6 we show, on the left hand, the orig-
inal network, which has been recovered correctly
because no noise was introduced. The other net-
works correspond to those recovered with different
levels of noise. We should point out that we experi-
mented with values on the variance from 0.1 to 3.0,
but only from 1.5 the effects of the noise affected
the recovered structure.
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Figure 7: Noise distribution and entropy

In figure 7 we may see two plots. The first one
corresponds to the normal distributions from which
we introduce the noise. The z axis indicate the
selection shift. And the second one corresponds
to the Kullback-Leibler cross entropy computed
given the original Bayesian Network and different
datasets with different levels of noise. This last plot
shows that as long as the noise increases, the dis-
tance between the distribution of the dataset and
the distribution of the Bayesian Network, increases
as well.

The domain of the five variables we have used in
this experiment is bivalued, so we have a probabil-
ity distribution over a possible set of tuples with 32
entries. In figure 8 we may see how the probability
distribution is modified by the effect of the noise.
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Figure 8: Probability distributions affected by the
effect of noise

The way in which this noise affects the process
of recovering a Bayesian Network structure, is by
removing some arcs. In other words, introducing
assertions of marginal independence. This means
that for minimal I-maps, as the case of the figure
6, this effect destroys its I-mapness, according to
the original probability distribution.

Finally, we should point out that the size of the
dataset used to perform these experiments was one
thousand tuples. If we look carefully the first plot
of figure 7, we will realize that the amount of tuples
that were affected by the noise (this means at least
one variable was modified) reaches from 40% for
1.5 of variance, up to 56% for 3.0 of variance.

And the values of the noise for which the struc-
ture did not suffer any change (0.1 to 1.0), modified
up to 32% of the dataset.

6 Conclusions

A Data Mining tool, as Data Surveyor, is an ideal
workbench for the task of recovering dependency
models for several reasons:

e It is prepared to deal with large databases

¢ It is able to stop the discovery process and re-
sume it from an arbitrary point in the search



space

e In the implementation we had not to bother
about how do we access the data

e It makes easier the experimentation by al-
lowing to select an arbitrary set of source
attributes and the ability to select different
search strategies makes possible to schedule
different recovering algorithms.

The neighbourhood operator we designed plus
the parameterized beam search has let us to es-
cape local maxima in many of our experiments.
We think that this framework, will make easier to
find new ways of improving the task of recovering
Bayesian Networks structures, because we tackle
the problem in terms of adding new search strate-
gies, new quality measures and/or new operators
that might afford different ways of exploring the
search space.

The possibility of identifying patterns of hidden
influences in data, is of high interest in data analy-
sis, and any kind of automatic support to its iden-
tification can become an important feature to any
Data Mining and OLAP system.

With low levels of noise, in the way we introduced
it, the Bayesian Measure has a good behavior.

7 Further Research

New search approaches should be developed, to-
wards the achievement of better local maxima. Re-
search in quality measures also is of fundamental
importance for recovering structures. It is impor-
tant to try to find cheaper ways of formalizing these
measures.

Research in operators that might explore the
search space in different ways is important. Mainly
to overcome the problem of generating the current
neighbourhood of DAGs.

Algorithms that can help identifying patterns of
hidden influences in data, should be developed and
integrated into Data Surveyor. Its implementation
form might arise from the interaction with other
models (e.g. clustering), and from the explotation
of the axiomatic properties of the dependency mod-
els.

The noise is an element that appear quite often in
real-world data. It is important to find ways of de-

tecting and overcome it, when we perform Bayesian
Networks recovering.

Besides probability, the incorporation of other
formalizations of uncertainty, e.g. possibility the-
ory, might make the tool useful in broader areas of
research in uncertainty [22].
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